Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. how many drug objectives are there? Nature Rev. Drug Discov. 5, 993–996 (2006).
Imming, P., Sinning, C. & Meyer, A. drugs, their targets and the character and variety of drug targets. Nature Rev. Drug Discov. 5, 821–834 (2006).
Owens, J. 2006 drug approvals: discovering the niche. Nature Rev. Drug Discov. 6, 187–187 (2007).
Baxter, D. F. et al. A novel membrane potential-delicate fluorescent dye improves phone-based mostly assays for ion channels. J. Biomol. reveal. 7, 79–eighty five (2002).
Benjamin, E. R. et al. State-based compound inhibition of Nav1.2 sodium channels the usage of the FLIPR Vm dye: on-goal and off-target consequences of distinct pharmacological agents. J. Biomol. display. 11, 29–39 (2006).
Lu, Q., Lin, S. & Dunlop, J. in handbook of Assay construction in Drug Discovery. (ed. Minor, L. ok.) 343–356 (CRC, Baco Raton, 2006).
Wolfe, C., Fuks, B. & Chatelain, P. Comparative study of membrane capabilities-sensitive fluorescent probes and their use in ion channel screening assays. J. Biomol. monitor. 8, 533–543 (2003).
Parihar, A. S. et al. functional analysis of huge conductance Ca2+-activated ok+ channels: ion flux experiences by using atomic absorption spectrometry. Assay Drug Dev. Technol. 1, 647–654 (2003).
Terstappen, G. C. useful evaluation of native and recombinant ion channels using a high-means nonradioactive rubidium efflux assay. Anal. Biochem. 272, 149–one hundred fifty five (1999).
Terstappen, G. C. Nonradioactive rubidium ion efflux assay and its functions in drug discovery and building. Assay Drug Dev. Technol. 2, 553–559 (2004).
Pan, Y. P., Xu, X. H. & Wang, X. L. high throughput screening system of potassium channel regulators. Yao Xue Xue Bao 39, eighty five–88 (2004) (in chinese language).
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. more desirable patch-clamp ideas for top-decision existing recording from cells and telephone-free membrane patches. Pflugers Arch. 391, 85–one hundred (1981).
Asmild, M. et al. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Recept. Channels 9, 49–fifty eight (2003).
Lepple-Wienhues, A., Ferlinz, okay., Seeger, A. & Schafer, A. Flip the tip: an automatic, excessive first-rate, low-cost patch clamp reveal. Recept. Channels 9, 13–17 (2003).
Vasilyev, D. V., Merrill, T. L. & Bowlby, M. R. construction of a novel computerized ion channel recording components the usage of "internal-out" whole-telephone membranes. J. Biomol. monitor. 10, 806–813 (2005).
Vasylyev, D., Merrill, D., Iwanow, A., Dunlop, J. & Bowlby, M. A novel method for patch clamp automation. Pflugers Arch. 452, 240–247 (2006).
Schnizler, okay., Kuster, M., Methfessel, C. & Fejtl, M. The roboocyte: computerized cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-smartly microtiter plates. Recept. Channels 9, forty one–48 (2003).
Papke, R. L. Estimation of each the potency and efficacy of α7 nAChR agonists from single-concentration responses. lifestyles Sci. 78, 2812–2819 (2006).
Kiss, L. et al. high throughput ion-channel pharmacology: planar-array-based mostly voltage clamp. Assay Drug Dev. Technol. 1, 127–one hundred thirty five (2003).
Schroeder, ok., Neagle, B., Trezise, D. J. & Worley, J. Ionworks HT: a brand new excessive-throughput electrophysiology size platform. J. Biomol. display. eight, 50–sixty four (2003). This represents the primary validation of an strategy to the full automation of patch clamping in mammalian cells the use of a perforated patch-clamp structure.
Sorota, S., Zhang, X. S., Margulis, M., Tucker, k. & Priestley, T. Characterization of a hERG screen the use of the IonWorks HT: assessment to a hERG rubidium efflux monitor. Assay Drug Dev. Technol. 3, 47–fifty seven (2005).
Bridgland-Taylor, M. H. et al. Optimisation and validation of a medium-throughput electrophysiology-based mostly hERG assay using IonWorks HT. J. Pharmacol. Toxicol. methods 54, 189–199 (2006).
Finkel, A. et al. inhabitants patch clamp improves facts consistency and success prices in the measurement of ionic currents. J. Biomol. monitor. eleven, 488–496 (2006). Describes the 2d-era innovation within the IonWorks platform incorporating the population patch-clamp mode leading to a significant boost in percent success rate and compound throughput.
John, V. H. et al. Novel 384-smartly population patch clamp electrophtsiology assays for Ca2+-activated ok+ channels. J. Biomol. screen. 12, 50–60 (2007).
Tao, H. et al. automatic tight seal electrophysiology for assessing the potential hERG legal responsibility of pharmaceutical compounds. Assay Drug Dev. Technol. 2, 497–506 (2004). original analyze on the implementation of computerized electrophysiology in assist of preclinical evaluation of cardiac ion-channel legal responsibility of drug candidates.
Xu, J. et al. A benchmark look at with sealchip planar patch-clamp expertise. Assay Drug Dev. Technol. 1, 675–684 (2003). the primary demonstration of computerized patch clamp in mammalian cells reaching the same giga-ohm quality seals to these in manual patch-clamp electrophysiology.
Mathes, C. QPatch: the previous, existing and future of computerized patch clamp. professional Opin. Ther. goals 10, 319–327 (2006).
Dubin, A. E. et al. settling on modulators of hERG channel activity the use of the PatchXpress planar patch clamp. J. Biomol. monitor. 10, 168–181 (2005).
Guo, L. & Guthrie, H. automated electrophysiology within the preclinical comparison of medicine for potential QT prolongation. J. Pharmacol. Toxicol. strategies 52, 123–135 (2005).
Kutchinsky, J. et al. Characterization of potassium channel modulators with QPatch automatic patch-clamp expertise: device characteristics and performance. Assay Drug Dev. Technol. 1, 685–693 (2003).
Farre, C. et al. automatic ion channel screening: patch clamping made handy. skilled Opin. Ther. aims eleven, 557–565 (2007).
Brueggemann, A. et al. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology. Curr. Drug Discov. Technol. 1, 91–ninety six (2004).
Bruggemann, A. et al. high nice ion channel evaluation on a chip with the NPC expertise. Assay Drug Dev. Technol. 1, 665–673 (2003).
Stett, A., Burkhardt, C., Weber, U., van Stiphout, P. & Knott, T. CYTOCENTERING: a novel approach enabling computerized mobile-with the aid of-cellphone patch clamping with the CYTOPATCH chip. Recept. Channels 9, 59–sixty six (2003).
Groot-Kormelink, P. J., Tranter, P. R. & Gosling, M. Maximising the effectivity and utility of automatic planar patch clamp electrophysiology. Eur. Pharm. Rev. 1, 39–45 (2007).
Jow, F. et al. Validation of a medium-throughput electrophysiological assay for KCNQ2/three channel enhancers the usage of IonWorks HT. J. Biomol. reveal. 12, 1059–1067 (2007).
Virginio, C., Giacometti, A., Aldegheri, L., Rimland, J. M. & Terstappen, G. C. Pharmacological houses of rat α7 nicotinic receptors expressed in native and recombinant mobile programs. Eur. J. Pharmacol. 445, 153–161 (2002).
Williams, M. E. et al. Ric-3 promotes useful expression of the nicotinic acetylcholine receptor α7 subunit in mammalian cells. J. Biol. Chem. 280, 1257–1263 (2005).
Kola, I. & Landis, J. Can the pharmaceutical industry in the reduction of attrition prices? Nature Rev. Drug Discov. 3, 711–715 (2004).
Kramer, J., Sagartz, J. & Morris, D. The software of discovery toxicology and pathology in opposition t the design of safer pharmaceutical lead candidates. Nature Rev. Drug Discov. 6, 636–649 (2007).
Preziosi, P. Science, pharmacoeconomics and ethics in drug R.&D: a sustainable future scenario? Nature Rev. Drug Discov. three, 521–526 (2004).
Redfern, W. S. et al. Relationships between preclinical cardiac electrophysiology, medical QT interval prolongation and torsade de pointes for a wide range of drugs: facts for a provisional protection margin in drug building. Cardiovasc. Res. 58, 32–forty five (2003). A seminal analyze defining the relationships between preclinical ion-channel pharmacology and expertise for QT interval prolongation in a various range of drug molecules.
Sanguinetti, M. C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).
foreign convention on Harmonisation (ICH). counsel for trade. S7B Nonclinical contrast of the talents for Delayed Ventricular Repolarization (QT Interval Prolongation) by using Human pharmaceuticals. ICH web web site [online], (2005).
Bass, A. S., Tomaselli, G., Bullingham, R. third & Kinter, L. B. medication outcomes on ventricular repolarization: a crucial contrast of the strengths and weaknesses of present methodologies and regulatory practices. J. Pharmacol. Toxicol. methods 52, 12–21 (2005).
Friedrichs, G. S., Patmore, L. & Bass, A. Non-medical comparison of ventricular repolarization (ICH S7B): consequences of an meantime survey of international pharmaceutical businesses. J. Pharmacol. Toxicol. methods 52, 6–eleven (2005).
Aronov, A. M. average pharmacophores for uncharged human ether-a-go-go-connected gene (hERG) blockers. J. Med. Chem. forty nine, 6917–6921 (2006).
Dubus, E., Ijjaali, I., Petitet, F. & Michel, A. In silico classification of HERG channel blockers: a data-primarily based strategy. ChemMedChem 1, 622–630 (2006).
tune, M. & Clark, M. development and evaluation of an in silico mannequin for hERG binding. J. Chem. Inf. mannequin. forty six, 392–400 (2006).
Finlayson, ok., Turnbull, L., January, C. T., Sharkey, J. & Kelly, J. S. [3H]dofetilide binding to HERG transfected membranes: a possible excessive throughput preclinical display. Eur. J. Pharmacol. 430, 147–148 (2001).
Deacon, M. et al. Early contrast of compound QT prolongation effects: a predictive 384-neatly fluorescence polarization binding assay for measuring hERG blockade. J. Pharmacol. Toxicol. strategies 55, 238–247 (2007).
Guthrie, H., Livingston, F. S., Gubler, U. & Garippa, R. a place for high-throughput electrophysiology in cardiac safeguard: screening hERG phone strains and novel compounds with the ion works HTTM device. J. Biomol. display. 10, 832–840 (2005).
Meyer, T., Boven, ok. H., Gunther, E. & Fejtl, M. Micro-electrode arrays in cardiac security pharmacology: a novel device to study QT interval prolongation. Drug Saf. 27, 763–772 (2004).
Meyer, T., Leisgen, C., Gonser, B. & Gunther, E. QT-screen: excessive-throughput cardiac security pharmacology through extracellular electrophysiology on basic cardiac myocytes. Assay Drug Dev. Technol. 2, 507–514 (2004).
Bliss, T. & Lomo, T. long-lasting potentiation of synaptic transmission within the dentate area of the anaesthetized rabbit following stimulation of the perforant course. J. Physiol. 232, 331–356 (1973). long-established demonstration of the synaptic property of LTP, a commonly studied cellular mannequin of reminiscence, and now a contemporary center of attention of automation efforts in mind-slice electrophysiology.
Madison, D., Malenka, R. & Nicoll, R. Mechanisms underlying long-term potentiation of synaptic transmission. Ann. Rev. Neurosci. 14, 379–397 (1991).
Bliss, T. & Collingridge, G. A synaptic model of reminiscence: lengthy-time period potentiation within the hippocampus. Nature 361, 31–39 (1993).
Nicoll, R. & Malenka, R. Expression mechanisms underlying NMDA receptor-based long-time period potentiation. Ann. big apple Acad. Sci. 868, 515–525 (1999).
Kemp, N. & Bashir, Z. lengthy-time period depression: a cascade of induction and expression mechanisms. Prog. Neurobiol. 65, 339–365 (2001).
Lynch, M. long-time period potentiation and memory. Physiol. Rev. eighty four, 87–136 (2004).
Larson, J., Lynch, G., video games, D. & Seubert, P. variations in synaptic transmission and lengthy-term potentiation in hippocampal slices from younger and aged PDAPP mice. brain Res. 840, 23–35 (1999).
Jacobsen, J. et al. Early-onset behavioral and synaptic deficits in a mouse mannequin of Alzheimer's sickness. Proc. Natl Acad. Sci. united states 103, 5161–5166 (2006).
Picconi, B. et al. Pathological synaptic plasticity in the striatum: implications for Parkinson's ailment. Neurotoxicology 26, 779–783 (2005).
Kreitzer, A. & Malenka, R. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's ailment fashions. Nature 445, 643–647 (2007).
Coyle, J. Glutamate and schizophrenia: past the dopamine speculation. mobilephone. Mol. Neurobiol. (2006).
Stephan, k., Baldeweg, T. & Friston, k. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry fifty nine, 929–939 (2006).
McIlWain, H. Praparing Neural Tissues for Metabolic study in Isolation (ed. McIlWain, H.) (Churchill Livingstone, Edinburgh, London & ny, 1975).
Teyler, T. mind slice training: hippocampus. brain Res. Bull. 5, 391–403 (1980).
Andersen, P. brain slices — a neurobiological device of expanding usefulness. trends Neurosci. 4, 53–56 (1981).
Dingledine, R. brain Slices (ed. Dingledine, R.) (Springer, big apple, 1984).
Stopps, M. et al. Design and application of a novel mind slice gadget that makes it possible for impartial electrophysiological recordings from distinctive slices. J. Neurosci. methods 132, 137–148 (2004).
Huang, C.-W., Hsieh, Y.-J., Tsai, J. & Huang, C.-C. results of lamotrigine on container potentials, propagation, and lengthy-term potentiation in rat prefrontal cortex in multi-electrode recording. J. Neurosci. Res. 83, 1141–1150 (2006).
Krause, M. & Jia, Y. Serotonergic modulation of carbachol-triggered rhythmic undertaking in hippocampal slices. Neuropharmacology forty eight, 381–390 (2005).
Oka, H., Shimono, ok., Ogawa, R., Sugihara, H. & Taketani, M. a new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J. Neurosci. strategies ninety three, sixty one–67 (1999).
Shimono, okay., Baudry, M., Panchenko, V. & Taketani, M. persistent multichannel recordings from organotypic hippocampal slice cultures: coverage from excitotoxic consequences of NMDA by using noncompetitive NMDA antagonists. J. Neurosci. strategies 120, 193–202 (2002).
Shimono, okay., Brucher, F., Granger, R., Lynch, G. & Taketani, M. Origins and distribution of cholinergically triggered beta rhythms in hippocampal slices J. Neurosci. 20, 8462–8473 (2000).
Egert, U. et al. A novel organotypic lengthy-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. brain Res. Protocols 2, 229–242 (1998).
Martinoia, S. et al. In vitro cortical neuronal networks as a new high-delicate device for biosensing applications. Biosens. Bioelectron. 20, 2071–2078 (2005).
Potter, S. & DeMarse, T. a brand new strategy to neural mobile lifestyle for long-term studies. J. Neurosci. strategies 110, 17–24 (2001).
van Pelt, J., corner, M., Wolters, P., Rutten, W. & Ramakers, G. Longterm balance and developmental adjustments in spontaneous community burst firing patterns in dissociated rat cerebral cortex mobilephone cultures on microeloectrode arrays. Neurosci. Lett. 361, 86–89 (2004).
Morin, F., Takamura, Y. & Tamiya, E. Investigating neuronal undertaking with planar microelectrode arrays: achievements and new perspectives. J. Biosci. Bioeng. one hundred, 131–143 (2005).
van Pelt, J., Vajda, I., Wolters, P., corner, M. & Ramakers, G. Dynamics and plasticity in establishing neuronal networks in vitro. Prog. mind Res. 147, 173–188 (2005).
Wagenaar, D., Madhavan, R., Pine, J. & Potter, S. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J. Neurosci. 25, 680–688 (2005).
Stacy, R., Demas, J., Burgess, R., Sanes, J. & Wong, R. Disruption and recuperation of patterned retinal activity in the absence of acetylcholine. J. Neurosci. 25, 9347–9357 (2005).
Ishikane, H., Gangi, M., Honda, S. & Tachibana, M. Synchronized retinal oscillations encode elementary guidance for get away behavior in frogs. Nature Neurosci. eight, 1087–1095 (2005).
Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A. & Okano, T. Electrical coupling of cardiomyocyte sheets happens hastily by means of purposeful hole junction formation. Biomaterials 27, 4765–4774 (2006).
Reppel, M., Boettinger, C. & Hescheler, J. β-Adrenergic and muscarinic modulation of human embryonic stem phone-derived cardiomyocytes. cell Physiol. Biochem. 14, 187–196 (2004).
No comments:
Post a Comment