United international locations. international assessment file on catastrophe risk discount 2015 (United nations overseas strategy for disaster discount, 2015).
Centre for analysis on the Epidemiology of disasters. The human can charge of climate-related mess ups 1995-2015 (United countries workplace for catastrophe risk discount, 2015).
Serpico, S. B. et al. suggestions extraction from remote sensing pictures for flood monitoring and harm comparison. Proc. IEEE 100, 2946–2970. https://doi.org/10.1109/JPROC.2012.2198030 (2012).
Schumann, G.J.-P., Brakenridge, G. R., Kettner, A. J., Kashif, R. & Niebuhr, E. assisting flood catastrophe response with earth statement facts and items: a crucial evaluation. far flung Sens. 10, 1230. https://doi.org/10.3390/rs10081230 (2018).
United international locations. international assessment file on catastrophe chance discount 2019 (United international locations international method for catastrophe reduction, 2019).
WorldFloods GitLab repository. https://gitlab.com/frontierdevelopmentlab/catastrophe-prevention/cubesatfloods. Accessed: 2020-12-08.
foreign charter "space and fundamental mess ups". https://disasterscharter.org/. Accessed: 2020-06-15.
Havas, C. et al. E2mc: improving emergency administration service practice through social media and crowdsourcing analysis in near actual time. Sensors 17, 2766 (2017).
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F. & Hanssen, R. F. ESA's Sentinel missions in support of Earth system science. far off Sens. Environ. one hundred twenty, 84–ninety (2012).
Drusch, M. et al. Sentinel-2: ESA's optical high-decision mission for GMES operational functions. remote Sens. Environ. one hundred twenty, 25–36 (2012).
Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S. & Twiggs, R. CubeSat: a new technology of picosatellite for training and business low-cost area experimentation. In 14th Annual/USU convention on Small Satellites (2000).
Esposito, M., Conticello, S., Pastena, M. & Domínguez, B. C. In-orbit demonstration of synthetic intelligence applied to hyperspectral and thermal sensing from area. In CubeSats and SmallSats for faraway Sensing III, vol. 11131, 111310C (international Society for Optics and Photonics, 2019).
Manzillo, P. F. et al. Hyperspectral imaging for real time land and vegetation inspection. within the 4S Symposium (2017).
Estlin, T. A. et al. AEGIS automatic Science targeting for the MER probability Rover. ACM Trans. Intell. Syst. Technol.https://doi.org/10.1145/2168752.2168764 (2012).
Francis, R. et al. AEGIS independent targeting for ChemCam on Mars Science Laboratory: deployment and outcomes of initial science group use. Sci. robot.https://doi.org/10.1126/scirobotics.aan4582 (2017).
Griggin, M., Burke, H., Mandl, D. & Miller, J. Cloud cowl detection algorithm for EO-1 Hyperion imagery. In IEEE overseas Geoscience and remote Sensing Symposium (IGARSS 2003), vol. 1, 86–89 vol.1, https://doi.org/10.1109/IGARSS.2003.1293687 (2003).
Doggett, T. et al. self sustaining detection of cryospheric alternate with hyperion on-board earth watching-1. far off Sens. Environ. one zero one, 447–462. https://doi.org/10.1016/j.rse.2005.11.014 (2006).
Ip, F. et al. Flood detection and monitoring with the self reliant sciencecraft experiment onboard eo-1. remote Sens. Environ. one zero one, 463–481. https://doi.org/10.1016/j.rse.2005.12.018 (2006).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Camps, A. et al. FSSCAT, the 2017 Copernicus Masters' "ESA Sentinel Small satellite tv for pc challenge" Winner: A Federated Polar and Soil Moisture Tandem Mission in accordance with 6U Cubesats. In IEEE foreign Geoscience and far flung Sensing Symposium (IGARSS 2018), 8285–8287 (IEEE, 2018).
Esposito, M. et al. Hyperscout 2 particularly integration of hyperspectral and thermal infrared technologies for a miniaturized eo imager. In living Planet Symposium, https://doi.org/10.13140/RG.2.2.25659.67367 (2019).
Giuffrida, G. et al. Cloudscout: a deep neural community for on-board cloud detection on hyperspectral photographs. far off Sens.https://doi.org/10.3390/rs12142205 (2020).
Smith, S. W. The Scientist and Engineer's e-book to Digital sign Processing (Chapter 27) (California Technical Publishing, California, 1997).
McFeeters, S. k. using the Normalized difference Water Index (NDWI) within the delineation of open water elements. Int. J. faraway Sens. 17, 1425–1432. https://doi.org/10.1080/01431169608948714 (1996).
Memon, A. A., Muhammad, S., Rahman, S. & Haq, M. Flood monitoring and damage evaluation using water indices: a case analyze of pakistan flood-2012. Egypt. J. far off Sens. house Sci. 18, 99–106. https://doi.org/10.1016/j.ejrs.2015.03.003 (2015).
Obserstadler, R., Hönsch, H. & Huth, D. assessment of the mapping capabilities of ers-1 sar facts for flood mapping: a case examine in germany. Hydrol. technique. eleven, 1415–1425 (1997).
Twele, A., Cao, W., Plank, S. & Martinis, S. Sentinel-1-primarily based flood mapping: a totally automatic processing chain. Int. J. far flung Sens. 37, 2990–3004 (2016).
Martinis, S. et al. evaluating 4 operational sar-based water and flood detection methods. Int. J. remote Sens. 36, 3519–3543 (2015).
Stringham, C. et al. The capella x-band sar constellation for quick imaging. In IEEE foreign Geoscience and far off Sensing Symposium (IGARSS 2019), 9248–9251, https://doi.org/10.1109/IGARSS.2019.8900410 (2019).
Isikdogan, F., Bovik, A. C. & Passalacqua, P. floor water mapping by deep researching. IEEE J. opt for. issues Appl. Earth Obser. far off Sens. 10, 4909–4918 (2017).
Rudner, T. et al. Multi3net: segmenting flooded constructions by the use of fusion of multiresolution, multisensor, and multitemporal satellite imagery. Proc. AAAI Conf. Artif. Intell. 33, 702–709 (2019).
Isikdogan, L. F., Bovik, A. & Passalacqua, P. Seeing during the clouds with DeepWaterMap. IEEE Geosci. far flung Sens. Lett.https://doi.org/10.1109/LGRS.2019.2953261 (2019).
Wieland, M. & Martinis, S. A modular processing chain for automated flood monitoring from multi-spectral satellite statistics. remote Sens. 11, 2330. https://doi.org/10.3390/rs11192330 (2019).
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic photograph segmentation. lawsuits of the eu convention on computer vision (ECCV) 801–818, (2018).
Mandanici, E. & Bitelli, G. Preliminary comparison of sentinel-2 and landsat eight imagery for a combined use. remote Sens. eight, 1014 (2016).
eco-friendly, R. O. et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). far flung Sens. Environ. 65, 227–248 (1998).
Pearlman, J. S. et al. Hyperion, a space-based mostly imaging spectrometer. IEEE Trans. Geosci. faraway Sens. 41, 1160–1173 (2003).
Esposito, M. & Marchi, A. Z. In-orbit demonstration of the first hyperspectral imager for nanosatellites. In overseas convention on house Optics-ICSO 2018, vol. 11180, 1118020 (overseas Society for Optics and Photonics, 2019).
Vane, G. et al. The airborne visible/infrared imaging spectrometer (AVIRIS). far off Sens. Environ. 44, 127–143 (1993).
Wieland, M., Li, Y. & Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural community. remote Sens. Environ. 230, 111203. https://doi.org/10.1016/j.rse.2019.05.022 (2019).
Mateo-García, G., Laparra, V., López-Puigdollers, D. & Gómez-Chova, L. Transferring deep studying models for cloud detection between Landsat-eight and Proba-V. ISPRS J. Photogr. faraway Sens. 160, 1–17. https://doi.org/10.1016/j.isprsjprs.2019.11.024 (2020).
Simard, P. Y., Steinkraus, D. & Platt, J. C. top-rated practices for convolutional neural networks utilized to visible document evaluation. complaints of the Seventh overseas convention on doc analysis and recognition - 2, (2003).
Ding, J., Chen, B., Liu, H. & Huang, M. Convolutional neural network with facts augmentation for sar goal focus. IEEE Geosci. remote Sens. Lett. 13, 364–368 (2016).
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. high-resolution mapping of global floor water and its long-term alterations. Nature 540, 418–422. https://doi.org/10.1038/nature20584 (2016).
Schumann, G.J.-P. The want for scientific rigour and accountability in flood mapping to greater assist catastrophe response. Hydrol. procedure. 1, (2019).
Copernicus Emergency management gadget. https://emergency.copernicus.ecu/. Accessed: 2019-09-15.
UNOSAT. http://floods.unosat.org/geoportal/catalog/main/home.page. Accessed: 2019-09-15.
international Flood Inundation Map Repository. https://sdml.ua.edu/glofimr/. Accessed: 2019-09-15.
s2cloudless: Sentinel Hub's cloud detector for Sentinel-2 imagery. https://github.com/sentinel-hub/sentinel2-cloud-detector. Accessed: 2019-09-15.
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial evaluation for each person. remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).
Schmitt, M., Hughes, L. H., Qiu, C. & Zhu, X. X. SEN12MS-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep studying and statistics fusion. ISPRS Ann. Photogr. faraway Sens. Spat. Inf. Sci.IV–2/W7, 153–160. https://doi.org/10.5194/isprs-annals-IV-2-W7-153-2019 (2019).
JRC each year Water Classification. https://builders.google.com/earth-engine/datasets/catalog/JRC_GSW1_1_YearlyHistory. Accessed: 2021-01-31.
McFeeters, S. k. using the normalized difference water index (NDWI) inside a geographic advice system to realize swimming pools for mosquito abatement: a realistic approach. faraway Sens. 5, 3544–3561. https://doi.org/10.3390/rs5073544 (2013).
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical photograph segmentation. In international convention on clinical photo Computing and computer-Assisted Intervention, 234–241 (Springer, 2015).
Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised cube overlap as a deep studying loss feature for totally unbalanced segmentations. In Deep researching in clinical photo evaluation and Multimodal studying for scientific decision help, 240–248 (Springer, 2017).
Huang, B., Reichman, D., Collins, L. M., Bradbury, okay. & Malof, J. M. Tiling and Stitching Segmentation Output for far flung Sensing: simple Challenges and proposals. arXiv:1805.12219 [cs] (2019).
Jones, J. W. more advantageous automated detection of subpixel-scale inundation-revised dynamic floor water extent (DSWE) partial floor water assessments. faraway Sens. eleven, 374. https://doi.org/10.3390/rs11040374 (2019).
Ahmad, S. k., Hossain, F., Eldardiry, H. & Pavelsky, T. M. A fusion strategy for water area classification using seen, close infrared and artificial aperture radar for south asian circumstances. IEEE Trans. Geosci. far flung Sens. 58, 2471–2480. https://doi.org/10.1109/TGRS.2019.2950705 (2020).
Cooley, S. W., Smith, L. C., Stepan, L. & Mascaro, J. monitoring dynamic northern floor water alterations with high-frequency planet CubeSat imagery. faraway Sens. 9, 1306. https://doi.org/10.3390/rs9121306 (2017).
Ploton, P. et al. Spatial validation reveals bad predictive efficiency of colossal-scale ecological mapping fashions. Nat. Commun. 11, 4540. https://doi.org/10.1038/s41467-020-18321-y (2020).
Mateo-Garcia, G., Laparra, V., Lopez-Puigdollers, D. & Gomez-Chova, L. cross-sensor adversarial area adaptation of Landsat-eight and Proba-V photographs for cloud detection. IEEE J. selected accurate. Appl. Earth Obser. remote Sens.https://doi.org/10.1109/JSTARS.2020.3031741 (2020).
Rambour, C. et al. Flood detection in time sequence of optical and sar photos. Int. Arch. Photogr. far off Sens. Spat. Inf. Sci. forty three, 1343–1346 (2020).
Bonafilia, D., Tellman, B., Anderson, T. & Issenberg, E. Sen1Floods11: A georeferenced dataset to instruct and look at various deep discovering flood algorithms for sentinel-1. complaints of the IEEE/CVF convention on computer imaginative and prescient and sample awareness Workshops 210–211, (2020).
Nemni, E., Bullock, J., Belabbes, S. & Bromley, L. totally Convolutional Neural network for speedy Flood Segmentation in artificial Aperture Radar Imagery. faraway Sens.12, 2532, https://doi.org/10.3390/rs12162532 (2020)
Gupta, R. et al. creating xBD: A dataset for assessing constructing damage from satellite imagery. lawsuits of the IEEE conference on desktop vision and pattern recognition Workshops 10–17, (2019).
Mateo-Garcia, G. et al. Flood detection on cost-efficient orbital hardware. arXiv preprint arXiv:1910.03019 (2019).
No comments:
Post a Comment