Tuesday, March 31, 2020

totally Untethered Battery-free Biomonitoring electronic ...

  • 1.

    Haahr, R. G., Duun, S., Thomsen, E. V., Hoppe, k. & Branebjerg, J. A wearable "electronic patch" for instant continual monitoring of chronically diseased sufferers. In 2008 5th international summer faculty and Symposium on clinical instruments and Biosensors, sixty six–70, https://doi.org/10.1109/ISSMDBS.2008.4575018 (IEEE, 2008).

  • 2.

    Wu, C.-C. et al. A pliable and batteryless real-time ECG monitoring equipment-in-a-patch. in VLSI Design, Automation and test(VLSI-DAT) 1–four, https://doi.org/10.1109/VLSI-DAT.2015.7114521 (IEEE, 2015).

  • three.

    Akalin Acar, Z., Acar, C. E. & Makeig, S. Simultaneous head tissue conductivity and EEG source location estimation. Neuroimage 124, 168–one hundred eighty (2016).

  • four.

    Tavakoli, M., Benussi, C. & Lourenco, J. L. Single channel surface EMG manage of advanced prosthetic fingers: an easy, affordable and efficient method. skilled Syst. Appl. 79 (2017).

  • 5.

    Tavakoli, M., Benussi, C., Alhais Lopes, P., Osorio, L. B. & de Almeida, A. T. effective hand gesture attention with a double channel floor EMG wearable armband and SVM classifier. Biomed. sign system. manage forty six, 121–one hundred thirty (2018).

  • 6.

    Maragliulo, S., Lopes, P. F. A., Osorio, L. B., de Almeida, A. T. & Tavakoli, M. Foot Gesture recognition via dual Channel Wearable EMG device. IEEE Sens. J., https://doi.org/10.1109/jsen.2019.2931715 (2019).

  • 7.

    Kim, D.-H. et al. Epidermal Electronics. Science (80-.). 333, 838–843 (2011).

  • eight.

    Gong, S. et al. Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as enormously long lasting Wearable Sensors. ACS Appl. Mater. Interfaces 7, 19700–19708 (2015).

  • 9.

    Zucca, A. et al. Tattoo Conductive Polymer Nanosheets for epidermis-Contact applications. Adv. Healthc. Mater. 4, 983–990 (2015).

  • 10.

    Bareket, L. et al. temporary-tattoo for long-time period high constancy biopotential recordings. Sci. Rep. 6 (2016).

  • eleven.

    Ferrari, L. M. et al. Ultraconformable transient Tattoo Electrodes for Electrophysiology. Adv. Sci., https://doi.org/10.1002/advs.201700771 (2018).

  • 12.

    Jeong, J. W. et al. materials and optimized designs for human-laptop interfaces by the use of epidermal electronics. Adv. Mater., https://doi.org/10.1002/adma.201301921 (2013).

  • 13.

    Greco, F., Zucca, A., Taccola, S., Mazzolai, B. & Mattoli, V. Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces. ACS Appl. Mater. Interfaces 5, 9461–9469 (2013).

  • 14.

    Kabiri Ameri, S. et al. Graphene electronic Tattoo Sensors. ACS Nano, https://doi.org/10.1021/acsnano.7b02182 (2017).

  • 15.

    Ha, T. et al. A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the dimension of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals. Adv. Sci., https://doi.org/10.1002/advs.201900290 (2019).

  • 16.

    Shustak, S. et al. home monitoring of sleep with a short lived-tattoo EEG, EOG and EMG electrode array: A feasibility study. J. Neural Eng., https://doi.org/10.1088/1741-2552/aafa05 (2019).

  • 17.

    Jia, W. et al. Electrochemical Tattoo Biosensors for real-Time Noninvasive Lactate Monitoring in Human Perspiration. (2013).

  • 18.

    Liu, C., Guo, Y.-X., solar, H. & Xiao, S. Design and safety concerns of an Implantable Rectenna for a lot-box instant vigor transfer. IEEE Trans. Antennas Propag. sixty two, 5798–5806 (2014).

  • 19.

    Chow, E. Y. et al. wireless Powering and the look at of RF Propagation through Ocular Tissue for development of Implantable Sensors. IEEE Trans. Antennas Propag. fifty nine, 2379–2387 (2011).

  • 20.

    Campi, T. et al. instant energy switch Charging gadget for AIMDs and Pacemakers. IEEE Trans. Microw. conception Tech. sixty four, 633–642 (2016).

  • 21.

    Kim, J.-D., sun, C. & Suh, I.-S. A idea on instant energy switch for medical implantable applications according to studies. In 2014 IEEE wireless vigor switch convention 166–169, https://doi.org/10.1109/WPT.2014.6839592 (IEEE, 2014).

  • 22.

    Tianjia solar et al. A Two-Hop instant energy switch system With an efficiency-improved vigour Receiver for action-Free capsule Endoscopy Inspection. IEEE Trans. Biomed. Eng. fifty nine, 3247–3254 (2012).

  • 23.

    Ke, Q., Luo, W., Yan, G. & Yang, okay. Analytical mannequin and Optimized Design of vigor Transmitting Coil for Inductively Coupled Endoscope robotic. IEEE Trans. Biomed. Eng. 63, 694–706 (2016).

  • 24.

    Manoufali, M., Bialkowski, k., Mohammed, B. J., Mills, P. C. & Abbosh, A. near-field Inductive-Coupling hyperlink to power a 3-dimensional Millimeter-measurement Antenna for brain Implantable clinical contraptions. IEEE Trans. Biomed. Eng. sixty five, 4–14 (2018).

  • 25.

    Xue, R. F., Cheng, k. W. & Je, M. high-efficiency instant vigor switch for Biomedical Implants by means of greatest Resonant Load Transformation. IEEE Trans. Circuits Syst. I, Reg. Pap. 60, 867–874 (2013).

  • 26.

    Alberto, J., Puccetti, G., Grandi, G., Reggiani, U. & Sandrolini, L. Experimental study on the termination impedance effects of a resonator array for inductive energy transfer in the hundred kHz latitude. in Proc. 2015 IEEE wireless vigor transfer Conf. (WPTC 2015) 1–four, https://doi.org/10.1109/WPT.2015.7139136 (2015).

  • 27.

    Alberto, J., Puccetti, G., Reggiani, U., Sandrolini, L. & Tacchini, A. Multilayer Flat Spiral Resonators for Low Frequency wireless vigour switch. in 2018 IEEE-APS Topical convention on Antennas and Propagation in instant Communications (APWC) 873–876, https://doi.org/10.1109/APWC.2018.8503768 (2018).

  • 28.

    Alberto, J., Reggiani, U. & Sandrolini, L. Magnetic near box from an inductive vigor transfer system the usage of an array of coupled resonators. 2016 Asia-Pacific Int. Symp. on Electromagn. Compat. (APEMC) 01, 876–879 (2016).

  • 29.

    García Núñez, C., Manjakkal, L. & Dahiya, R. energy self reliant digital epidermis. npj Flex. Electron. 3, 1 (2019).

  • 30.

    Huang, X. et al. Epidermal radio frequency electronics for instant power switch. Microsystems Nanoeng. 2, 16052 (2016).

  • 31.

    Niu, S. et al. A wireless body area sensor community according to stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

  • 32.

    Miozzi, C., Nappi, S., Amendola, S., Occhiuzzi, C. & Marrocco, G. A general-goal Configurable RFID Epidermal Board with a Two-way Discrete Impedance Tuning. IEEE Antennas Wirel. Propag. Lett. 18, 684–687 (2019).

  • 33.

    Yu, X. et al. dermis-integrated wireless haptic interfaces for digital and augmented reality. Nature 575 (2019).

  • 34.

    Ho, J. S. et al. instant vigour switch to deep-tissue microimplants. Proc. Natl. Acad. Sci. us of a 111, 7974–9 (2014).

  • 35.

    Kim, S., Ho, J. S. & Poon, A. S. Y. wireless energy transfer to Miniature Implants: Transmitter Optimization. IEEE Trans. Antennas Propag. 60, 4838–4845 (2012).

  • 36.

    Larmagnac, A., Eggenberger, S., Janossy, H. & Vörös, J. Stretchable electronics in response to Ag-PDMS composites. Sci. Rep. four, 1–7 (2014).

  • 37.

    Tavakoli, M. et al. Carbon doped PDMS: Conductance balance over time and implications for additive manufacturing of stretchable electronics. J. Micromechanics Microengineering 27 (2017).

  • 38.

    Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D. H. high-efficiency stretchable conductive nanocomposites: substances, strategies, and device applications. Chemical Society studies forty eight, 1566–1595 (2019).

  • 39.

    Fernandes, D. F., Majidi, C. & Tavakoli, M. Digital Printing of Stretchable Electronics: A overview. J. Mater. Chem. C, https://doi.org/10.1039/c9tc04246f (2019).

  • 40.

    Wang, L. & Liu, J. Liquid steel inks for flexible electronics and 3D printing: A overview. In ASME overseas Mechanical Engineering Congress and Exposition, complaints (IMECE) 2B, (American Society of Mechanical Engineers (ASME) 2014).

  • forty one.

    Fernandes, D., Majidi, C. & Tavakoli, M. Digitally Printed Stretchable Electronics: A assessment. J. off Mater. Chem. C In Press (2019).

  • forty two.

    Marques, D. G., Lopes, P. A., Almeida, A. T. de, C Majidi & Tavakoli, M. reputable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab a Chip (In Press. 19, 897–906 (2019).

  • 43.

    Lu, T., Markvicka, E. J., Jin, Y. & Majidi, C. gentle-count number Printed Circuit Board with UV Laser Micropatterning. ACS Appl. Mater. Interfaces 9, 22055–22062 (2017).

  • 44.

    Rocha, R., Lopes, P., de Almeida, A. T., Tavakoli, M. & Majidi, C. gentle-rely sensor for proximity, tactile and power detection. In 2017 IEEE/RSJ overseas conference on clever Robots and techniques (IROS) 3734–3738, https://doi.org/10.1109/IROS.2017.8206222 (2017).

  • forty five.

    Yoon, Y., Kim, S., Kim, D., Kauh, S. ok. & Lee, J. four levels-of-Freedom Direct Writing of Liquid metal Patterns on Uneven Surfaces. advanced substances applied sciences, https://doi.org/10.1002/admt.201800379 (2018).

  • forty six.

    Boley, J. W., White, E. L., Chiu, G. T. C. & Kramer, R. k. Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).

  • 47.

    Lopes, P. A., Paisana, H., Almeida, A. T., Majidi, C. & Tavakoli, M. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-skin for Bioelectronics & Human-laptop interplay. ACS Appl. Mater. Interfaces 10, 38760–38768 (2018).

  • forty eight.

    Lopes, P. A., Paisana, H., De Almeida, A. T., Majidi, C. & Tavakoli, M. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-skin for Bioelectronics and Human-laptop interplay. ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.8b13257 (2018).

  • 49.

    Tavakoli, M. et al. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, skinny-movie Electronics. Adv. Mater. 30, 1–7 (2018).

  • 50.

    Albulbul, A. Evaluating important Electrode types for Idle organic signal Measurements for up to date clinical know-how. Bioengineering three, 20 (2016).

  • fifty one.

    Romero, E. Powering Biomedical gadgets. Powering Biomedical devices, https://doi.org/10.1016/C2012-0-06126-1 (2013).

  • 52.

    Vallejo, M., Recas, J., del Valle, P. & Ayala, J. accurate Human Tissue Characterization for power-effective instant On-body Communications. Sensors 13, 7546–7569 (2013).

  • fifty three.

    Karacolak, T., Cooper, R., Unlu, E. S. & Topsakal, E. Dielectric residences of Porcine dermis Tissue and In Vivo trying out of Implantable Antennas the usage of Pigs as model Animals. IEEE Antennas Wirel. Propag. Lett. 11, 1686–1689 (2012).

  • 54.

    Kim, J. H., Kim, S., So, J. H., Kim, ok. & Koo, H. J. Cytotoxicity of Gallium-Indium Liquid steel in an Aqueous environment. ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.8b02320 (2018).

  • 55.

    Li, S. & Mi, C. C. instant power transfer for electric powered vehicle purposes. IEEE J. Emerg. Sel. appropriate. energy Electron. three, four–17 (2015).

  • No comments:

    Post a Comment