Haahr, R. G., Duun, S., Thomsen, E. V., Hoppe, k. & Branebjerg, J. A wearable "electronic patch" for instant continual monitoring of chronically diseased sufferers. In 2008 5th international summer faculty and Symposium on clinical instruments and Biosensors, sixty six–70, https://doi.org/10.1109/ISSMDBS.2008.4575018 (IEEE, 2008).
Wu, C.-C. et al. A pliable and batteryless real-time ECG monitoring equipment-in-a-patch. in VLSI Design, Automation and test(VLSI-DAT) 1–four, https://doi.org/10.1109/VLSI-DAT.2015.7114521 (IEEE, 2015).
Akalin Acar, Z., Acar, C. E. & Makeig, S. Simultaneous head tissue conductivity and EEG source location estimation. Neuroimage 124, 168–one hundred eighty (2016).
Tavakoli, M., Benussi, C. & Lourenco, J. L. Single channel surface EMG manage of advanced prosthetic fingers: an easy, affordable and efficient method. skilled Syst. Appl. 79 (2017).
Tavakoli, M., Benussi, C., Alhais Lopes, P., Osorio, L. B. & de Almeida, A. T. effective hand gesture attention with a double channel floor EMG wearable armband and SVM classifier. Biomed. sign system. manage forty six, 121–one hundred thirty (2018).
Maragliulo, S., Lopes, P. F. A., Osorio, L. B., de Almeida, A. T. & Tavakoli, M. Foot Gesture recognition via dual Channel Wearable EMG device. IEEE Sens. J., https://doi.org/10.1109/jsen.2019.2931715 (2019).
Kim, D.-H. et al. Epidermal Electronics. Science (80-.). 333, 838–843 (2011).
Gong, S. et al. Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as enormously long lasting Wearable Sensors. ACS Appl. Mater. Interfaces 7, 19700–19708 (2015).
Zucca, A. et al. Tattoo Conductive Polymer Nanosheets for epidermis-Contact applications. Adv. Healthc. Mater. 4, 983–990 (2015).
Bareket, L. et al. temporary-tattoo for long-time period high constancy biopotential recordings. Sci. Rep. 6 (2016).
Ferrari, L. M. et al. Ultraconformable transient Tattoo Electrodes for Electrophysiology. Adv. Sci., https://doi.org/10.1002/advs.201700771 (2018).
Jeong, J. W. et al. materials and optimized designs for human-laptop interfaces by the use of epidermal electronics. Adv. Mater., https://doi.org/10.1002/adma.201301921 (2013).
Greco, F., Zucca, A., Taccola, S., Mazzolai, B. & Mattoli, V. Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces. ACS Appl. Mater. Interfaces 5, 9461–9469 (2013).
Kabiri Ameri, S. et al. Graphene electronic Tattoo Sensors. ACS Nano, https://doi.org/10.1021/acsnano.7b02182 (2017).
Ha, T. et al. A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the dimension of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals. Adv. Sci., https://doi.org/10.1002/advs.201900290 (2019).
Shustak, S. et al. home monitoring of sleep with a short lived-tattoo EEG, EOG and EMG electrode array: A feasibility study. J. Neural Eng., https://doi.org/10.1088/1741-2552/aafa05 (2019).
Jia, W. et al. Electrochemical Tattoo Biosensors for real-Time Noninvasive Lactate Monitoring in Human Perspiration. (2013).
Liu, C., Guo, Y.-X., solar, H. & Xiao, S. Design and safety concerns of an Implantable Rectenna for a lot-box instant vigor transfer. IEEE Trans. Antennas Propag. sixty two, 5798–5806 (2014).
Chow, E. Y. et al. wireless Powering and the look at of RF Propagation through Ocular Tissue for development of Implantable Sensors. IEEE Trans. Antennas Propag. fifty nine, 2379–2387 (2011).
Campi, T. et al. instant energy switch Charging gadget for AIMDs and Pacemakers. IEEE Trans. Microw. conception Tech. sixty four, 633–642 (2016).
Kim, J.-D., sun, C. & Suh, I.-S. A idea on instant energy switch for medical implantable applications according to studies. In 2014 IEEE wireless vigor switch convention 166–169, https://doi.org/10.1109/WPT.2014.6839592 (IEEE, 2014).
Tianjia solar et al. A Two-Hop instant energy switch system With an efficiency-improved vigour Receiver for action-Free capsule Endoscopy Inspection. IEEE Trans. Biomed. Eng. fifty nine, 3247–3254 (2012).
Ke, Q., Luo, W., Yan, G. & Yang, okay. Analytical mannequin and Optimized Design of vigor Transmitting Coil for Inductively Coupled Endoscope robotic. IEEE Trans. Biomed. Eng. 63, 694–706 (2016).
Manoufali, M., Bialkowski, k., Mohammed, B. J., Mills, P. C. & Abbosh, A. near-field Inductive-Coupling hyperlink to power a 3-dimensional Millimeter-measurement Antenna for brain Implantable clinical contraptions. IEEE Trans. Biomed. Eng. sixty five, 4–14 (2018).
Xue, R. F., Cheng, k. W. & Je, M. high-efficiency instant vigor switch for Biomedical Implants by means of greatest Resonant Load Transformation. IEEE Trans. Circuits Syst. I, Reg. Pap. 60, 867–874 (2013).
Alberto, J., Puccetti, G., Grandi, G., Reggiani, U. & Sandrolini, L. Experimental study on the termination impedance effects of a resonator array for inductive energy transfer in the hundred kHz latitude. in Proc. 2015 IEEE wireless vigor transfer Conf. (WPTC 2015) 1–four, https://doi.org/10.1109/WPT.2015.7139136 (2015).
Alberto, J., Puccetti, G., Reggiani, U., Sandrolini, L. & Tacchini, A. Multilayer Flat Spiral Resonators for Low Frequency wireless vigour switch. in 2018 IEEE-APS Topical convention on Antennas and Propagation in instant Communications (APWC) 873–876, https://doi.org/10.1109/APWC.2018.8503768 (2018).
Alberto, J., Reggiani, U. & Sandrolini, L. Magnetic near box from an inductive vigor transfer system the usage of an array of coupled resonators. 2016 Asia-Pacific Int. Symp. on Electromagn. Compat. (APEMC) 01, 876–879 (2016).
García Núñez, C., Manjakkal, L. & Dahiya, R. energy self reliant digital epidermis. npj Flex. Electron. 3, 1 (2019).
Huang, X. et al. Epidermal radio frequency electronics for instant power switch. Microsystems Nanoeng. 2, 16052 (2016).
Niu, S. et al. A wireless body area sensor community according to stretchable passive tags. Nat. Electron. 2, 361–368 (2019).
Miozzi, C., Nappi, S., Amendola, S., Occhiuzzi, C. & Marrocco, G. A general-goal Configurable RFID Epidermal Board with a Two-way Discrete Impedance Tuning. IEEE Antennas Wirel. Propag. Lett. 18, 684–687 (2019).
Yu, X. et al. dermis-integrated wireless haptic interfaces for digital and augmented reality. Nature 575 (2019).
Ho, J. S. et al. instant vigour switch to deep-tissue microimplants. Proc. Natl. Acad. Sci. us of a 111, 7974–9 (2014).
Kim, S., Ho, J. S. & Poon, A. S. Y. wireless energy transfer to Miniature Implants: Transmitter Optimization. IEEE Trans. Antennas Propag. 60, 4838–4845 (2012).
Larmagnac, A., Eggenberger, S., Janossy, H. & Vörös, J. Stretchable electronics in response to Ag-PDMS composites. Sci. Rep. four, 1–7 (2014).
Tavakoli, M. et al. Carbon doped PDMS: Conductance balance over time and implications for additive manufacturing of stretchable electronics. J. Micromechanics Microengineering 27 (2017).
Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D. H. high-efficiency stretchable conductive nanocomposites: substances, strategies, and device applications. Chemical Society studies forty eight, 1566–1595 (2019).
Fernandes, D. F., Majidi, C. & Tavakoli, M. Digital Printing of Stretchable Electronics: A overview. J. Mater. Chem. C, https://doi.org/10.1039/c9tc04246f (2019).
Wang, L. & Liu, J. Liquid steel inks for flexible electronics and 3D printing: A overview. In ASME overseas Mechanical Engineering Congress and Exposition, complaints (IMECE) 2B, (American Society of Mechanical Engineers (ASME) 2014).
Fernandes, D., Majidi, C. & Tavakoli, M. Digitally Printed Stretchable Electronics: A assessment. J. off Mater. Chem. C In Press (2019).
Marques, D. G., Lopes, P. A., Almeida, A. T. de, C Majidi & Tavakoli, M. reputable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab a Chip (In Press. 19, 897–906 (2019).
Lu, T., Markvicka, E. J., Jin, Y. & Majidi, C. gentle-count number Printed Circuit Board with UV Laser Micropatterning. ACS Appl. Mater. Interfaces 9, 22055–22062 (2017).
Rocha, R., Lopes, P., de Almeida, A. T., Tavakoli, M. & Majidi, C. gentle-rely sensor for proximity, tactile and power detection. In 2017 IEEE/RSJ overseas conference on clever Robots and techniques (IROS) 3734–3738, https://doi.org/10.1109/IROS.2017.8206222 (2017).
Yoon, Y., Kim, S., Kim, D., Kauh, S. ok. & Lee, J. four levels-of-Freedom Direct Writing of Liquid metal Patterns on Uneven Surfaces. advanced substances applied sciences, https://doi.org/10.1002/admt.201800379 (2018).
Boley, J. W., White, E. L., Chiu, G. T. C. & Kramer, R. k. Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).
Lopes, P. A., Paisana, H., Almeida, A. T., Majidi, C. & Tavakoli, M. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-skin for Bioelectronics & Human-laptop interplay. ACS Appl. Mater. Interfaces 10, 38760–38768 (2018).
Lopes, P. A., Paisana, H., De Almeida, A. T., Majidi, C. & Tavakoli, M. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-skin for Bioelectronics and Human-laptop interplay. ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.8b13257 (2018).
Tavakoli, M. et al. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, skinny-movie Electronics. Adv. Mater. 30, 1–7 (2018).
Albulbul, A. Evaluating important Electrode types for Idle organic signal Measurements for up to date clinical know-how. Bioengineering three, 20 (2016).
Romero, E. Powering Biomedical gadgets. Powering Biomedical devices, https://doi.org/10.1016/C2012-0-06126-1 (2013).
Vallejo, M., Recas, J., del Valle, P. & Ayala, J. accurate Human Tissue Characterization for power-effective instant On-body Communications. Sensors 13, 7546–7569 (2013).
Karacolak, T., Cooper, R., Unlu, E. S. & Topsakal, E. Dielectric residences of Porcine dermis Tissue and In Vivo trying out of Implantable Antennas the usage of Pigs as model Animals. IEEE Antennas Wirel. Propag. Lett. 11, 1686–1689 (2012).
Kim, J. H., Kim, S., So, J. H., Kim, ok. & Koo, H. J. Cytotoxicity of Gallium-Indium Liquid steel in an Aqueous environment. ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.8b02320 (2018).
Li, S. & Mi, C. C. instant power transfer for electric powered vehicle purposes. IEEE J. Emerg. Sel. appropriate. energy Electron. three, four–17 (2015).